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ABSTRACT 

In this study we propose a novel rapid and efficient way to predict carbonates content in soil by means of Fourier 

Transform Near-Infrared (FT-NIR) reflectance spectroscopy and by use of deep learning methods. In addition to using 

traditional machine learning algorithms, we exploited multiple deep learning methods, such as: 1) a Multi-Layered 

Perceptron Regressor (MLP) and 2) a Convolutional Neural Network (CNN) in an attempt to compare their 

performance with other classical machine learning algorithms, which up until now were considered the field’s 

standards, such as Partial Least Squares Regression (PLSR), Cubist and Support Vector Machines (SVM)  on the 

combined dataset of two NIR spectral libraries: Kellogg Soil Survey Laboratory (KSSL) of the United States 

Department of Agriculture (USDA), a dataset of soil samples reflectance spectra collected nationwide, and Land Use 

and Coverage Area Frame Survey (LUCAS) TopSoil-2015 (European Soil Library) which contains soil sample 

absorbance spectra from all over the European Union, and use them to predict carbonate content on never-before-seen 

soil samples. In this study, absorbances in the NIR spectral region (1150-2500 nm) were utilized in two different ways: 

a) as one-dimensional data and b) as two-dimensional spectrograms which, to our knowledge, is a completely novel 

approach that has rarely been researched. Quantification of carbonates by means of X-ray-Diffraction is in good 

agreement with the volumetric method and the MLP prediction. Our work contributes to rapid carbonates content 

prediction in soil samples in cases where: 1) no volumetric method is available and 2) only NIR spectra absorbance 

data are available.  
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1. Introduction 

NIR spectroscopy is a rapid, non-destructive method of low cost that provides excellent correlation of observed and 

predicted values when regression algorithms are applied in spectral data and especially in large datasets (1–3). Early 

research studies in soil properties are using minimal input in terms of soil samples collected and considering minimal 

geographical areas and locations (4,5). These studies typically modeled total carbon (tC) and soil organic carbon 

(SOC) (2,5–8), soil organic matter (SOM) (9,10), soil inorganic carbon and carbonates (SIC) (11), total nitrogen (tN) 

(12–18), phosphorous content (12), potassium content (12), clay (18,19), pH (15,16), moisture content (6,20,21) and 

cationic exchange capacity (CEC) (18,22). Some studies had also modeled other properties specific to their objectives, 

such as total elemental content e.g., in (15). Computational progress and especially new algorithms applied in the 

spectral data are nowadays efficient to predict soil properties for larger datasets and fields, acquiring hundreds and 

thousands soil samples over locations of interest to generate large databases of spectral and physicochemical 

properties. Recently, hyperspectral NIR spectral data acquisition is even possible using satellites with high resolution 

data acquired (23).    

Graphical Abstract 
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Figure 1: The pipeline of collection of soil samples, experimental and theoretical assessment, and prediction of 

carbonates. Soil samples were collected from two distinct areas in Xanthi and Alexandroupolis fields and were 

sieved to >250μm. Furthermore, NIR spectra were acquired and calcimetry was applied in addition to calibration 

dataset generated by large spectral libraries (KSSL, USDA and LUCAS-2015-TopSoil). This calibration dataset, 

with spectra in the NIR region, was utilized for applying different regression models (namely PLSR, SVM, Cubist, 

MLP and 2D-CNN). MLP method outperformed other methods in prediction of carbonates in soil samples. Saliency 

map from 2D-CNN deep learning method, also indicated hydromagnesite peaks in the samples and XRD verified 

the presence of hydromagnesite quantitatively. It should be noted that apparatus is utilized exactly as appeared in 

this figure. 

 

 

2. Related Work 

Machine Learning (ML) techniques were introduced in chemometrics and soil spectroscopy as a means for information 

extraction and soil properties prediction. Both traditional ML and Deep Learning (DL) approaches have been 

extensively adopted (1,6,28) because of their intrinsic property to handle high dimensional data such as spectra. Deep 

neural networks, in particular, are capable of handling data in almost every form e.g. tabular data, text, images and 

audio, coupled with recent increases in computational power and the expansion of system memory capabilities, now 

make possible the use of spectral data to perform spectrogram-based analysis for soil properties predictions. As there 

are usually thousands of predictor variables (reflectance values), neural networks make an excellent choice for such a 

task because of their intrinsic trait to handle well data that suffer from high dimensionality. Convolutional Neural 

Networks (CNN) (29) have been used in image recognition with remarkable success and constitute one of the most 

powerful DL techniques for modeling complex processes such as pattern recognition in image based applications. 

Recently, Tsakiridis et al., (2020) utilized CNNs to predict multiple soil properties (30). The successful use of CNNs 

for soil property prediction without the use of pre-processed spectra was demonstrated in (31). They proposed the 
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representation of raw spectral data as a two-dimensional (2D) spectrogram and showed its superior performance over 

traditional ML techniques such as Partial least squares regression (PLSR) (32) and Cubist regression trees (33). Ng et 

al., (2019)  used the combined spectra of soil samples to train 1D and 2D CNNs that both outperformed traditional 

ML techniques (34). 

In our study, we compare different methodologies and techniques based on both computational regression techniques 

on NIR spectral data and experimental methods that usually apply on soil samples. Neural Networks algorithms 

outperformed the linear models for the soil carbonates content prediction as one term, and secondly, in the prediction 

of important NIR peaks. Classic mineralogical and analytical methods were also applied in soil samples establishing 

the feasibility of introducing neural networks regression methods in soil NIR spectra.  

Much effort is given towards elucidating soil properties in all continents and all recorded data is valuable knowledge 

for today and future research. Moreover, data science applied to spectral and physicochemical libraries for the 

construction of calibration libraries is a novel approach redefining universal scientific effort. Non-destructive and 

scientific effective methods are a new path in modern soil research and is adding value from a spectroscopic point of 

view.     

3. Methodology 

This research introduces a novel and efficient and expeditious method for forecasting soil carbonates content utilizing 

non-destructive Fourier Transform Near-Infrared (FT-NIR) reflectance spectroscopy and advanced deep learning 

techniques. The study assesses the performance of two deep learning models—namely, a Multi-Layered Perceptron 

Regressor (MLP) and a Convolutional Neural Network (CNN. Model training is performed on the consolidated dataset 

from two Near-Infrared (NIR) spectral libraries: the Kellogg Soil Survey Laboratory (KSSL) of the United States 

Department of Agriculture (USDA) (https://ncsslabdatamart.sc.egov.usda.gov/), which is a service agency that has 

been collecting spectral and other data, measuring physicochemical soil properties and location characteristics to vis-

NIR and MIR spectra across the United States of America, uploading and sharing the data, since 80 and more years 

until nowadays and the Land Use and Coverage Area Frame Survey (LUCAS) European Topsoil dataset (25) 

(https://esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data). Other similar spectral libraries include the Brazilian 

Soil Spectral Library (BSSL) (26) global soil datasets (1)  and the Chinese vis–NIR soil spectral library (CSSL) (27). 

The prediction models are trained on these extensive datasets and are then applied to predict carbonate content in 

previously unobserved soil samples collected from Xatzisavva wine fields in Alexandroupolis, Greece and 

https://ncsslabdatamart.sc.egov.usda.gov/
https://esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data
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Vourvoukelis vineyards in Avdira, Greece. We compare predictions with the predictions of more conventional machine 

learning algorithms like Partial Least Squares Regression (PLSR), Cubist, and Support Vector Machines (SVM) which 

are considered the standards in this research field. To validate models’ accuracy and performance, we also evaluate all 

models’ results against the results of our laboratory volumetric methods (Figure 1). 

 

3.1. Study Area 

The investigated area falls within the so-called areas of wine fields of Vourvoukelis winery in Avdira in Xanthi, 

Greece (40o 54’ 20’’ N, 25o 48’ 24’’E) and of organic wine fields of Xatzisavva winery in Alexandroupolis, Greece 

(41o 00’ 09’’ N, 24o 55’ 00’’ E).   

3.2. Sample pretreatment 

The diffuse NIR reflectance spectra of air-dried and (<250 μm) sieved soil samples were measured in the laboratory. 

Before spectral measurements, the samples were placed in glass Petri dishes and spectral acquisition was performed 

with thickness of the sample of ~3-4 cm to avoid transmission effects, for all samples. Background spectra was 

subtracted from all acquired NIR spectra. 

3.3. Spectral acquisition 

A Perkin-Elmer Spectrum N Two FT-NIR spectrophotometer (quartz beamsplitter and LiTaO3 NIR detector based 

on diode array) was used for spectral measurements in the spectral region of 1150–2500 nm. The spectral data was 

screened to ensure percentage reflectance measurements did not exceed theoretical limits, from 0.0 to 100.0. All 

spectra were exported to wavelength intervals of 0.5 nm. Absorbance spectra were calculated by means of equation 

(1).  

3.4. Pretreatment of spectral libraries as calibration dataset 

The soil spectra were transformed using three pretreatment methods prior to chemometric modeling, as the best 

treatment was not known a priori. This technique included the (pseudo) absorbance transformation, normalization 

of spectra between values 0-1, Savitzky‐Golay smoothing filtering with a window size of 11, polyorder of 2 for the 

differentiating SG-1 and window size of 13, polyorder of 2 for the differentiating SG-2 (35) were applied to the 

spectral data to reduce noise and enhance spectral features to all calibration data of both KSSL-LUCAS 2015 
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TopSoil libraries combined, in order to reduce undesirable variance of the data to improve the predictive capacity 

of the calibration models. These procedures were applied to the original reflectance spectra (R) for KSSL (USDA) 

and TopSoil 2015 (Europe) and transformed to Absorbance (A) by the following equation: 

A = log10(1/R)                                                                                                                                                         (1) 

No transmission (T) is observed due to the large thickness of the sample measured with the NIR spectrophotometer. 

Data screening resulted 28,615 samples for modeling with PLSR, Cubist, SVM, MLP and CNN models. Spectra of 

KSSL-USDA spectral library were transformed from percent reflectance to absorbance, by means of equation (1). The 

values of CaCO3 were normalized to g/100g since LUCAS-TopSoil laboratory measurement unit of CaCO3 is in g/kg.  

In machine learning applications, it is a well-known fact that the size of the training set plays a crucial role in 

generalization. Generalization is the ability of the model to perform well on never-before-seen data. Typically, we aim 

for a large, diverse training set and to that end a decision was made to merge the two spectral libraries into a larger 

one. Before merging, we compare both spectral datasets based on the Wasserstein metric which is a common way to 

compare the probability distributions of two variables: 

𝑊𝑝(𝑃, 𝑄) = (
1

𝑛
∑ ||𝑋(𝑖) − 𝑌(𝑖)||

𝑝
𝑛
𝑖=1 )

1

𝑝
                                                                                                                        (2) 

where P, Q are probability distributions (one-dimensional) and p is the number of moments. The results show that the 

two libraries are similar enough to be merged (Wasserstein distance=1.78). Comparison of the new combined training 

dataset with the test set shows low similarity between them (Wasserstein distance=6.48), which raises a concern of 

how well our model will perform on the test set.  

3.5. Laboratory carbonates measurement 

Results throughout this study are given as CO3
2- equivalents. The measurement is based on measuring the gaseous 

CO2 released from carbonate reacting with 6M HCl and is expected to be equally effective at measuring soil carbonates 

released from the full range of carbonate soil minerals including common forms such as calcite, magnesite, and 

dolomite and their hydrous compounds.  
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Carbonates equivalents were determined at both locations by pressure calcimeter method treating the <250 μm soil 

fraction with 6M HCl in a closed vial. At KSSL this was volumetric method 4E1a1a1 

(https://www.nrcs.usda.gov/sites/default/files/2023-01/SSIR42.pdf, accessed on 20 November 2022), and at LUCAS-

Topsoil this method was similar volumetric method with ISO 10693:1995 

(https://esdac.jrc.ec.europa.eu/public_path/shared_folder/dataset/66/JRC121325_lucas_2015_topsoil_survey_final_

1.pdf, accessed on 21 November 2022). 

3.6. Model Accuracy Evaluation  

In order to evaluate the model accuracy, four statistical metrics were applied, namely the coefficient of determination 

(R2), the Root Mean Square Error of calibration (RMSE), the Residual Prediction Deviation (RPD), and the Ratio of 

Performance to Inter-Quartile distance (RPIQ) as shown in the following equations (2)-(5). The R2 measures the 

percentage of variance of the dependent variable as influenced by the independent variable. The RPD is explained as 

the ratio of standard deviation of the measured reference values to RMSE and it is used for NIR spectra in soil science 

as a value of correctness of the model. Also, RPIQ is explained as the ratio of the standard deviation of the inter-

quartile distance of the measured reference data to RMSE.     

A combination of the R2 and RPD statistical metrics is allowing predictions to be favored or not. In more details, when 

R2 > 0.90 and RPD > 3.0, excellent prediction is provided by the model. When 0.82 < R2 < 0.90 and 2.5 < RPD < 3.0 

a good approximation is feasible by the model. In addition, moderate approximation is made when 0.66 < R2 < 0.82 

and 2 < RPD < 2.5. Finally, poor distinction of high and low values are performed when R2 < 0.66 and RPD < 2 as 

shown in (3). 

𝑹𝟐(𝑦, 𝑦̂) = 1 – 
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                                                                                                                 (3) 

where yi and y î are measured values and predicted values, respectively; n is the number of samples in the training set, 

RMSE = √
1

𝑁
∑(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑜𝑏𝑠)2                                                                                                                   (4) 
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where N is the sample size, ypred is the predicted value, and yobs is the observed value. Typically, the model with the 

lowest RMSE is chosen. 

RPD = STDEV(yobs)/RMSE                                                                                                                        (5) 

RPIQ is the ratio of performance to inter-quartile distance of the reference data in the external validation set). RPIQ 

is proposed to be applied instead of RPD in soil samples sets, for which often show a skewed distribution. As a 

result, RPIQ is a better way to standardize the RMSE in terms of population spread compared to RPD. RPIQ is based 

on quartiles representing the Q1 as the value below which 25% of the samples is found, Q2 as the value below where 

50% of the samples are found and Q3 as the value below where 75% of the samples are found. Such an approach as 

described in equation 5 is useful to determine equivalent ranges of population spread (3). 

                                      RPIQ = IQ/RMSE                                                                                           (6) 

where IQ = (Q3-Q1) 

3.7 XRD Quantification  

The samples were measured in a Bruker D8 Focus diffractometer with Bragg– Brentano configuration, operating at a 

voltage of 40 kV and an intensity of 40 mA. It contains a primary monochromator, working with a copper anticathode, 

Cu Kα1 monochromatic radiation (λ = 1.54056 Å). Acquisition was performed in 2θ scanning mode covering the 5-

90° range with steps/sec of 0.02°. Samples were grinded until the fine powder was less than 20 μm. The powder was 

mounted in a circular quartz holder. The phases included in the refinement were all the minerals that were identified 

by Profex and BGNM libraries according to their peak intensities.  

The Rietveld method (Rietveld, 1969) is a method that theoretically adjusts the structural and experimental parameters 

to the complete powder diffractogram profile of the sample, considering it as the sum of the Bragg reflections that 

appear at respective angular positions form crystalline material in the sample. It is considered as a total approach to 

mineralogical quantification. In addition, χ2 < 5 was considered as acceptable refinement statistics based on the 
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complexity of soil samples examined in this study and based on previous similar work of clay material XRD analysis 

(36). 

4. Algorithms and implementation 

4.1 Partial Least Squares Regression 

PLSR is a linear chemometric technique used for analysis of spectroscopic data for different applications. In our study, 

PLSR is used for the determination of soil carbonate content and is presented as a common modelling technique for 

quantitative spectroscopic analysis in soil mapping and classification as found in the literature (7,32,37). 

Decomposition of the spectral data into features (namely collective variables) is performed. The collective variables 

include most of the variance that exists in the reflectance NIR spectral data and thus linear models of the most 

correlated features are created.  

 

 𝑋 = 𝑇 . 𝑃^𝑇 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠(𝐸) (7) 

 

 𝑌 = 𝑇 . 𝐶 + 𝐸𝑟𝑟𝑜𝑟(𝑓) (8) 

In PLSR, a decomposition of the X and Y variables with finding new latent variables and a selection of orthogonal 

factors that is maximizing the relation between prediction variables (X-soil reflectance) and response variables (Y-

laboratory measured data) is performed. Components T that allows the decomposition of the predictors are searched 

by the PLSR (eq.1) and prediction of the response variables is also performed (equation 2). P and C are the factor 

loadings, and E and f are the residuals and errors matrices, respectively (38).  

In our study, the PLSR was performed with the optimum 22 collective variables (CV’s) in the existing NIR reflectance 

spectra acquired by the KSSL-USDA combined to LUCAS-TopSoil libraries (Figure 2).   
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Figure 2: Evolution of Mean Square Error (MSE) in progressing number of PLS components (collective variables, 

CV’s) is showing the optimum selection of 22 collective variables (CV’s) to best contribute to our PLSR model.  

4.2 Cubist 

The Cubist chemometric technique is based on the M5 algorithm of Quinlan (33) and is widely and successfully 

applied in vis-NIR spectroscopy analysis. Thus, the Cubist method is considered as a competitive method to other 

methods of multivariate regression in terms of prediction accuracy.  

The Cubist model is based on a regression tree construction with intermediate linear models extracted at each step of 

the procedure. It splits the original dataset that has similar attributes into subsets of sample and then generates multi-

linear regression rules by optimal predictor variables selected from all spectral variables.  
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Figure 3: Evolution of Mean Square Error (MSE) in progressing number of committees is showing the optimum 

selection of 10 committees to best contribute to our Cubist model.  

To optimize our Cubist model, we experimented on the number of committees (boosting). The results of our tests 

showed that after 10 committees, model performance saturates and we get diminishing returns (see Figure 3). 

Regarding the number of neighbors, it was kept to zero, based on our decision to not develop a composite model 

because the main focus of this research was on the novel deep learning methods. Furthermore, the number of trained 

models was ample enough for our research interest. 

4.3 Support Vector Machines  

Support vector machines (SVM) is a method that incorporates in its algorithm, linear equations for the regression 

analysis of multivariate cases (39,40).  

The input parameters used for training the SVM are the NIR features that will be derived from the CV’s calculated 

from the PLS regression model (CV’s = 22). A linear kernel was used, and all spectra were normalized using a standard 

scaler (all values truncated between 0-1). 
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4.4          Multi-Layer Perceptrons 

Multi-layer perceptrons (MLPs) or deep feedforward networks are machine learning models that use intermediate 

computations to transform their input 𝒙 to the output 𝒚 and in doing so evaluate a function 𝑓: 

𝒚 = 𝑓(𝒙; 𝜽)                                                                                                                                                             (9) 

The transformations (linear and non-linear) that each model’s layer implements to the data is parameterized by its 

weights 𝜽. In this context, the model’s goal is to find the set of values for the weights 𝜽 of all layers in the network 

that correctly map inputs instances to their corresponding targets. Put in another way, the weights 𝜽 that minimize the 

difference between the distribution of the output 𝒚 and the true underlying distribution of the targets. 

In contrast to linear models and to extend them to represent nonlinear functions of 𝒙, MLPs apply the linear model to 

a transformed input 𝜙(𝒙) and not to 𝒙. The ultimate goal is to learn 𝜙 :  

 

𝑦 = 𝑓(𝒙; 𝜽; 𝒘) = 𝜙(𝒙; 𝜽)^(⊤𝒘)                                                                                                                         (10) 

 

where 𝜽 are parameters used to learn 𝜙 from a broad family of functions and parameters 𝒘 that map from 𝜙(𝒙) to the 

desired output. The choice of how to represent the output determines the form of the cost function which usually 

expresses the difference between the predicted and the true distribution. In most cases the parametric model defines a 

distribution 𝑝(𝒚│𝒙; 𝜽) and the principle of maximumm likelihood is used:  

 

𝐽(θ) = −𝐸𝑥,𝑦∼𝑝𝑑𝑎𝑡𝑎̂
𝑙𝑜𝑔𝑝𝑚𝑜𝑑𝑒𝑙(𝑦|𝑥)                                                                                                                         (11) 
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In such cases, the cost function is the negative log-likelihood between targets and model's predictions. A simpler 

approach is to merely predict a statistic of y conditioned on x. Note that the cost function will often combine a 

regularization term such as weight decay or dropout layers in order to avoid overfitting. 

Our MLP model consists of three layers of 500, 200 and 50 units respectively (Figures 4, 5). Since we are predicting 

only one soil attribute (CaCO3) the model has a single output. To introduce non-linearity we apply the Rectified Linear 

Unit (ReLU) activation function and as a measure to mitigate overfitting L1 and L2 regularizers are applied to the third 

layer. We use the Adam optimizer (41) with a decaying learning rate. Savitzky-Golay second derivative smoothing 

filter is applied to the spectral dataset before being fed to the network.  

To train a neural network, usually one has to split their dataset in three smaller datasets: a) a training set that will be 

used to train the network and fix its weights (training sets are usually large in size and preferably diverse because 

training set diversity contributes to better generalization) b) a validation set which size is typically ~20% of training’s 

set size, and is used to test the model’s performance c) the unknown set which contains data samples that the model 

has never “seen” before. The performance of the model on the unknown dataset is the key objective. 

In our study, we performed an 80/20 training/validation dataset split and used 10-fold validation. K-fold validation is 

a technique typically used when the training set is relatively small, however, it has been proved that it yields slightly 

better predictive results even for larger datasets. For our experiments we combined both KSSL and LUCAS datasets. 

Before merging the two datasets, the Wasserstein test statistic was performed to gain insight on the “resemblance” of 

the two datasets. The result showed that the two datasets are very similar to each other (Wasserstein distance=1.78). 

High dataset similarity is often considered a good indicator for dataset merging. On the other hand, a training set 

should be diverse and present a relatively high degree of variability to avoid overfitting. 
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Figure 4: MLP architecture. Three consecutive hidden layers (with 500, 200, 50 units) are filtering the combined 

spectral dataset in the NIR region, to a final output. An activation function ReLU is applied to facilitate training of 

the MLP model.  

4.5          Convolutional Neural Networks 

Convolutional neural networks (CNN) are neural networks specialized in grid-like topology data i.e. images that are 

represented as 2D grid of pixels. Their architecture consists of stacked convolutional layers of multiple filters that 

convolve with their input to produce a series of feature maps. Generally, a convolution is an operation on two 

functions: 

𝑠(𝑡) = ∫(𝑥 ∗ 𝑤)(𝑡)                                                                                                                                                  (12) 

where 𝑥 is the input function and 𝑤, also known as the kernel (or filter), needs to be a valid density function for the 

output to be a valid weighted average of 𝑥 over time 𝑡. 
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When an instance passes through a CNN layer it usually undergoes three stages: first, the layer applies several 

convolutions in parallel to produce a set of linear activations. Then, each linear activation passes through a nonlinear 

activation function, such as a rectified linear unit. Finally, the output is further modified by a pooling function which 

serves both as a downsampling technique to reduce statistical and computational burden  (42) as means to make the 

representation become approximately invariant to small translations of the input (42).  Besides being translation 

invariant, CNNs learn spatial hierarchies of patterns: lower layers learn smaller patterns whereas layers near the output 

learn more complex patterns and abstract visual concepts (43). 

 

These traits make CNNs an excellent choice for machine vision tasks such as object detection, image classification 

and semantic segmentation. Although designed for multidimensional data e.g. images and CT scans, CNNs perform 

equally good on one-dimensional inputs. In fact, CNNs have been used with relative success in tasks that involve 

sequences e.g. time-series. However, in our case we applied CNNs to the sample spectrograms (2D images) although 

we trained a CNN on spectra which yielded results on par with the MLP Regressor. 

Our CNN model is made of three convolutional layers of 32, 64 and 128 filters respectively, each succeeded by a max-

pooling layer (F). All convolutional and max-pooling kernels are 3X3 size. A dense layer of 50 units sits on top of the 

convolutional stack which in turn is connected to the network's single output. As in the MLP approach, we use ReLU 

activation function and Adam optimizer. In this approach, the network's input is not spectra but their respective 

spectrograms, each with dimensions 244X488 pixels. It is easy to convert NIR spectral absorbances into two-

dimensional plots: NIR wavelengths represent the x-axis of the plot and absorbance values the y-axis. After 

conversion, the plots are stored as images and fed to the convolutional network. It should be considered that axis scale 

must be the same for all the plots. 
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Figure 5: CNN architecture. Three consecutive convolutional layers (with 32, 64, 128 units) are filtering the combined 

spectral dataset as images in the NIR region, with dimensions 244x488 pixels, to a final output. An activation function 

ReLU is also applied to facilitate training of the CNN model. 

5. Results 

Our predictive machine learning models, classical (PLSR, Cubist, SVM) and deep learning ones (MLP and CNN), 

trained on the combined two large spectral databases, achieve high performance results (R2 = 0.84, RPD = 2.14 for 

MLP) when applied to the unknown set: R2 = 0.68 and RPD = 1.47 for CNN, for the prediction accuracy of soil 

carbonates, in the second derivative of NIR spectra (Figure 7). 

Soil samples (no.45) of both Xatzisavva (SAM-1) wine fields in Alexandroupolis in Greece and Vourvoukelis (SAM-

2) in Avdira in Greece were collected and samples (no.19) from SAM-1 and SAM-2 groups exhibited non-zero values 

in carbonate content, using the volumetric method as described in the methods section and were recorded (g/100g). 

As shown in Table 1, at least one soil sample from SAM-1 group is rich in carbonates (highest content = 18.14%) and 

the poorest carbonates content is in SAM-2 group (lowest content = 0.04%).  
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Figure 6: On the top (a) absorbance spectra of an indicative soil sample (s03) (black) of Asyrtiko species from the 

Xatzisavva wine field in Alexandroupolis and calcium carbonate (Sigma, 239216) white powder spectrum (orange). 

Indication lines of carbonates vibration peaks are also shown as dashed lines. (b) a saliency map from CNN model in 

second derivative spectra, is showing the most favorable peaks that are considered to trigger the CNN model in a 

color gradient from red (most favored peaks) to light blue (less favored peaks).  
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Table 1: Experimental values of diverse soil samples (no.19) using the volumetric method in comparison with the 

predicted carbonates values from MLP model. Two groups of soil samples (SAM-1 and SAM-2) were measured and 

predicted. 

 

S/no Exp 

g/100g 

Pred 

g/100g 

S01 7.85 11.53 

S02 1.83 0.86 

S03 8.56 8.80 

S04 10.84 5.85 

S05 9.32 8.37 

S06 4.63 1.64 

S07 3.39 1.52 

S08 5.75 3.31 

S09 1.18 1.07 

S10 18.14 13.44 

S11 11.28 14.18 

S12 17.32 14.38 

S13 17.00 18.57 

S14 1.12 1.80 

S15 0.07 0.60 

S16 0.13 0.59 

S17 0.13 0.53 

S18 0.09 0.51 

S19 0.04 0.51 

 

 

 

 

 

 

SAM-1 

SAM-2 
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Figure 7: Plot of carbonates prediction with MLP vs Calcimetry (Volumetric method) of Table 1, exhibits R2 = 0.87. 

MLP deep learning methods calibrated throughout the combined dataset of KSSL-USDA NIR spectral library and 

LUCAS-2015-TopSoil NIR spectral library outperformed other regression methods utilized in our work. MLP performs 

well, even below the Limit of Detection of the Volumetric method that is 2.5 g/100g. All values reported are in g/100g.   
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Table 2: Regression prediction models applied to all data for carbonates (two spectral libraries, firstly 6,833 NIR 

spectra from KSSL (USA) combined with 21,782 NIR spectra from Lucas TopSoil (all European fields) for 

carbonates). Statistics of R2, Root Mean Square Error (RMSE), Residual Prediction Deviation (RPD) and Ratio of 

Performance to Inter-Quartile distance (RPIQ) are shown. From all pretreatments, the second derivative 

outperformed the other two methods of absorbance and first derivative spectra.  

 PLSR SVM Cubist MLP CNN (images) 

Second 

Derivative 

R2 = -1.43  

RMSE = 13.11 

RPD = 0.54 

RPIQ = 0.82 

R2 = -0.19  

RMSE = 6.59  

RPD = 0.91 

RPIQ = 1.43 

R2 = 0.86  

RMSE = 4.80 

 RPD = 2.70 

RPIQ = 2.13 

R2 = 0.87  

RMSE = 2.11 

RPD = 2.14 

RPIQ = 3.33 

R2 = 0.68  

RMSE = 4.11 

RPD = 1.47 

RPIQ = 2.29 

 

In order to describe in full detail, the carbonates content of the SAM-1 (sample S03), and SAM-2 (S18) we took insight 

in the quantification of the minerals by means of powder X-ray diffraction (XRD) method. Diffractograms were 

acquired in an in-house diffractometer, as mentioned in the methods section. Rietveld refinement using structural 

models was then performed (Figure 8).  
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Figure 8: XRD diffractogram shows that peaks of characteristic planes of calcite, and hydromagnesite are present in 

SAM-1, among other distinct minerals peaks. Crystalline Index (CI) is calculated to 0.72. 

Quantification of carbonates minerals in crystalline phase, in the representative soil sample (S03) of SAM-1 group, 

shows that total carbonates are contained in 6.07 % (w/w) with a crystalline index = 0.72. The total carbonates content 

is then calculated to 8.43 % (w/w). The minerals found were firstly calcite 3.88 % (w/w), and also hydromagnesite 

2.19 %, as shown in Table 3. A total of 8.43 % (w/w) in ratio of total minerals and in specific of both their crystalline 

phases of SAM-1 group and amorphous content based on crystalline index, is in good agreement with both volumetric 

method and MLP prediction of NIR spectra based on the calibration libraries of KSSL (USA) and LUCAS-Topsoil 

(EU).   
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Table 3: Comparison of total carbonates content of S03 from SAM-1 group by volumetric method, MLP prediction 

and XRD phase quantification of both calcite and hydromagnesite minerals shows a very good values agreement.   

SAM-1 Molecular formula 

Phase 

quantification 

from XRD 

(wt-%) 

Volumetric 

method 

(wt-%) 

MLP 

(wt-%) 

Calcite CaCO3 3.88 - - 

Hydro-

magnesite 

Mg5(CO3)4(OH)2·4H2O 2.19 - - 

Total 

carbonates 

CO3
2- 6.07 

(Crystalline 

Index = 0.72) 

Total = 8.43 

8.56 8.80 

In SAM-2 group, the carbonates content is negligible, as shown in Figure 9 and the XRD diffractogram where all 

peaks of calcite are absent, at 29.4o for (1-1-4) calcite plane and around 47.4o and 48.5o for (2-2-2) and (1-18) planes, 

respectively. Also, hydromagnesite is absent at 27.7o for (042) and at 39.2o for (080).  
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Figure 9: Absence of calcite and hydromagnesite crystalline phases in diffractogram for SAM-2 group representative 

sample (S18). 

6. Discussion 

Our computational machine learning models trained on two extensive spectral databases: the USDA's KSSL spectral 

library and the European Union's LUCAS 2015 TopSoil spectral library demonstrated impressive performance metrics 

(R2 = 0.87, RPD = 2.14 for MLP) in the prediction set, and (R2 = 0.68, RPD = 1.47 for CNN) specifically in predicting 

soil carbonates. 

Notably, the MLP exhibits remarkable accuracy, even in predicting extreme experimental values of soil carbonates, 

below the limit of detection (LOD) of the volumetric method. Its predictions align well with the quantification 

achieved through X-ray Diffraction and the volumetric method.  

Soil carbonates, primarily composed of calcium and magnesium carbonates, manifest distinctive absorption peaks in 

the NIR region. These peaks stem from the overtone and combination bands of the fundamental bands of CO3
2-, 

prevalent in the mid-IR region. In the NIR, carbonates exhibit five characteristic bands. Notably, a conspicuous peak 

around 2340 nm represents an overtone of the asymmetrical stretching v3 observed at 1415 cm-1 in the mid-IR region. 

Additionally, the peak near 2500-2550 nm corresponds to a combination of symmetrical stretching (v1) and the first 

absence of  

calcite planes  

absence of 

hydro-

magnesite 

planes 
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overtone of asymmetrical stretching (v3), denoted as (v1 + 2v3). Weaker absorptions are evident near 1415 nm due to 

crystallized water, around 1900 nm (v1 + 3v3), near 2000 nm (2v1 + 2v3), and around 2160 nm (3v1 + 2v4), where v4 

represents the in-plane bending (v4, 680 cm-1). It's noteworthy that the positions of these absorption bands vary based 

on the composition of the carbonates. While few studies have quantified carbonate composition in soil utilizing vis-

NIR spectroscopy for estimating carbonate content, a recent study examined soil carbonates content using mid-IR 

spectroscopy, employing the KSSL library for calibration (44). 

In an attempt to determine which wavelength absorbance peaks, possess more weight on the model’s performance and 

due to the fact that it is easier to visualize this through saliency mappings (peaks on the second derivative absorbance 

spectra) we develop a CNN model as discussed previously. The most favored peaks are in the 1415 nm, in the 1908 

nm, in the 2209 nm and in the 2335 nm. The sharp band at 1415 nm that is shown in soil NIR spectra in Figure 6, is 

due to calcite and hydromagnesite (Mg5(CO3)4(OH)2 
. 4(H2O)) that is a mineral also present in calcareous soils 

especially in SAM-1 group and absent in SAM-2 group. Hydrous carbonates, like other hydrous minerals, typically 

exhibit strong bands around 1400 nm due to O–H stretching or a combination of the symmetric H–O–H stretch and 

H–O–H bend (45). The shape of the absorption peaks can indicate whether this feature is produced by a hydroxyl or 

water group. The characteristic band near 1415 nm is also due to kaolinite that shows absorption wavelengths near 

1400 nm (1395 and 1415 nm) that are overtone vibrations of the O–H stretch near 2778 nm (3600 cm-1), and can to 

one part be attributed to the first overtone of structural O–H stretching mode in its octahedral layer (46). The 1880 nm 

band is due to v1 +2v3, where v1 is the totally symmetric C-O stretch and v3 is the doubly degenerate antisymmetric 

C-O stretching mode occurring near 7000 nm (47).  

Also, at 1908 nm occurs a combination of H–O–H bending and the asymmetrical stretching fundamentals. This band 

is possible overlapping with the main band of other minerals and in particular O-H stretch of kaolinite. Also, the peak 

near 2209 nm is triggered by the presence of calcite. Lastly, around 2235 nm a prominent peak of calcite triggers the 

saliency map derived from CNN model. Other peaks that are triggered by the content of carbonates by visual 

inspection of the saliency map, are difficult to assign because of various peak overlaps with hydroxyl and/or water 

molecules bound to mineral crystallites. As a result, NIR spectral assignment towards elucidation of carbonates peaks 

is a multiparametric task, especially in complex samples such as soil samples.  

In this study, soil samples were collected from two wine fields in Greece: Xatzisavva (SAM-1) in Alexandroupolis 

and Vourvoukelis (SAM-2) in Avdira, Xanthi. Carbonate content was determined using the volumetric method, 

recorded as g/100g. Table 1 reveals that at least one soil sample from the SAM-1 group has notably high carbonate 

content (highest content = 18.14%), while the SAM-2 group exhibits the lowest carbonate content (lowest content = 

0.04%). To identify influential wavelength absorbance peaks in the model's performance, saliency mappings were 

developed through a CNN model. The peaks with the highest significance were observed at 1415 nm, 1880 nm, 1995 

nm, and 2209 nm. The sharp band at 1415 nm corresponds to minerals like calcite, monohydrocalcite (Ca(CO3) . 

(H2O)), and hydromagnesite (Mg5(CO3)4(OH)2
 .4(H2O)), prevalent in calcareous soils, particularly in the SAM-1 

group and absent in the SAM-2 group. 
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In addition, the ratio of calcite/hydromagnesite in our soil samples is also calculated by means of X-ray diffraction 

(XRD). The two farms from which the soil samples were collected, have different farming conditions of operations 

and handling of soil, with Vourvoukelis farm introducing additional fertilizer in soil while Xatzisavva’s operational 

practice is pure organic. The ratio of calcite/hydromagnesite of soil fertility due to hydrous magnesite complexes that 

are present in addition to calcite, are important and totally detectable by XRD and saliency maps of 2D-CNN method 

(Figures 6, 9). The elegant method of 2D-CNN in the analysis of the combined dataset of KSSL and LUCAS-2015 

spectral libraries is reported for the first time to our knowledge, exhibiting the major peaks of influence in the 

regression and in the prediction. The prediction of secondary peaks (hydromagnesite in our prediction set) is in great 

accordance with the XRD quantification in two samples with different origin (namely SAM-1 and SAM-2).  

This research significantly contributes to the field by offering a swift prediction approach for soil carbonates content, 

particularly in scenarios where a volumetric method is unavailable, and only visible-NIR spectra absorbance data are 

at hand. 

To the best of our knowledge, this study is pioneering, presenting the first prediction model trained on such a 

comprehensive dataset, showcasing promising outcomes on previously unseen data. These findings robustly affirm 

the efficacy of deep learning models as potent tools for predicting soil carbonates content and the potency to identify 

NIR peaks of hydrous minerals by saliency map of 2D-CNN method. The ratio and in particular the quantification of 

calcite/hydrous compounds (hydromagnesite) is verified by XRD method. 

7. Conclusion 

Carbonates content of soil is an essential soil chemical property, with a significant impact on growth and production 

of crops. Soil genesis records and soil classifications as shown in various soil profiles are also mostly affected by the 

distribution of carbonates content of soils.  Here we present a modified way of soil carbonates prediction other than 

classical volumetric method. A minimal input of a NIR spectra provides the total carbonates content in soil samples, 

as calibrated with two spectral libraries, namely USDA-NRCS-KSSL and EU-LUCAS-2015-TopSoil with 28,615 

NIR spectra, where MLP method is trained in this dataset and applied for prediction. MLP method performed good in 

a diverse test set ranging from diverse carbonates content as low as 0.07%, to high content (18.14%) in soil samples. 

CNN method produced less favorable results in terms of prediction with experimentally derived carbonates values 

and a saliency map showed us the peaks triggered in training and prediction spectral sets. Peak assignment of various 

carbonates and hydrous carbonates minerals in the NIR region was also established. The presence of hydromagnesite 

in soil samples with highest carbonates content (SAM-1) was verified by means of XRD Rietveld analysis. 



ISSN 29450861 - Journal of the Association of Greek Chemists – JAGC – Issue 1  
 
 

28 
 

Quantification of the total carbonates content in SAM-1 group with XRD, and in representative sample S03, is in good 

agreement with MLP prediction and volumetric method applied, while the absence of carbonates content is obvious 

in SAM-2 group with XRD analysis.    
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Code availability section 

Carbonates_prediction 

Contact: tamvakis.petros@ac.eap.gr, +1-262-960-2449 (USA)  

Hardware requirements: CPU/GPU  

Program language: Python 3  

Software required: https://www.tensorflow.org/ and dependencies therein.  

Program size: 110 KB 

The source codes are available for downloading at the link: https://github.com/petamva/carbonates_prediction  
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